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There are degeneracy problems involved in the calculation of magnetic suscepti- 
bilities from Frost model wavefunctions built up from mixed s- and p-type 
Gaussians. Various methods are suggested to alleviate the difficulties and they 
are used to compute the susceptibilities of C2H2 and C2H4. 
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1. Introduction 

The Frost model [I] ground-state wavefunction using a Lewis basis set, that is one 
orbital per electron pair, is the antisymmetrized product of n doubly occupied 
floating Gaussian orbitals. Thus we can write the zero order function as d~0o, 
where 

~ o o  - -  6 1 ( 1 ) c 1 ( 2 ) c ~ ( 3 )  �9 � 9  6,(2n)~,O)f3(2)~,(3)... ~(2n), (1) 

with an s-type spherical Gaussian of the form 

Gi(j) = exp ( - ~ l r j  - R~I2), (2) 

with R~ the position of the centre of the ith Gaussian. The non-linear parameters 
{~, R~} are chosen to minimize the variational energy. 

It turns out that when calculating the values of molecular properties, such as 
electric polarizability and magnetic susceptibility, good results may be obtained 
using perturbation theory [2] with qSoo, given in Eq. (1), rather than d4~oo. For the 
electric polarizability, results are generally good and those for pi-bonding systems 
can be improved by the use of p-type Gaussians rather than simulating them with 
s-type functions [3]. 
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The extension of this theory to the use of p-type Gaussians in the calculation of 
magnetic susceptibilities is more complex than might be expected due to degeneracy 
problems. It is the purpose of this paper to suggest various methods of dealing with 
these difficulties and to illustrate the methods by considering two pi-bonding 
systems, acetylene and ethylene. 

2. Theory 

When a magnetic field of magnitude ~r acts in the z-direction, there are two 
perturbations to the molecular Hamiltonian, given by 

2n 

lien = ~'Yt~ E (x2(i) + Y2(i))' (3) 
6---1 

the diamagnetic part which is second order in the field, and 

f in  

W p = - ~ i a ~  ,~x k . r ( i )  A V,, (4) 

the paramagnetic part which is first order in the field. Each Gaussian, as given by 
Eq. (2), satisfies a one-electron eigenvalue equation 

h,G~ = eiGt, (5) 

where ~ = 3~ and h~ is a 3-dimensional oscillator Hamiltonian 

h, = �89 + 2(~,~lr - R,I~). (6) 

Consequently if00 is an eigenfunction of the 2n-electron Hamiltonian Ho, where 

Ho = ~ h,(2i) + h,(2i - 1). (7) 

From perturbation theory [2] the zz component of the magnetic susceptibility 
tensor of the molecule is 

x~ = - z x e - ~ ( E g l  + Eg~), (8) 

where 

Ega = (r (9) 

and 

es~ = (40ol w~1r (10) 

with ~ the first order change in the wavefunction due to the perturbation in 
Eq. (4), given by 

(1to - Eo)4ga = (ES~ - W")r (11) 

where E81 = (~ool W~]~oo) �9 
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Now for s-type functions the paramagnetic term cancels out the origin-dependent 
part of  the diamagnetic term, making the total result origin-independent. Then the 
formula for s-type spherical Gaussian Lewis sets is 

1 " 1 
= -~ ,~ ~- 02) 

We can consider the problem of Lewis basis sets which include p-type functions by 
an alternative method. Let the complete set of Gaussians that are eigenfunctions of 

{G~,~} where Eq. (6) be i 

with Ni,~ the normalizing constant and {/arm} are Hermite polynomials. 

Instead of Eq. (6) we define 

hi i i i 

with Ho given by Eq. (7) as before but with the h~ in that expression for /4o now 
given by Eq. (14). 

The choice 

e~m,v = (2(m + n + p) + 3)a,, (15) 

in Eq. (14), exactly corresponds to taking the h, of Eq. (6) but different choices of 
e~,p will lead to a different H0 and consequently different results. 

There are no problems in calculating the diamagnetic contribution to X~,, which is 
independent of  the choice of  H0, but there are for Eg2 the paramagnetic part, which 
using Eq. (14) may be written 

E~2 = 2 ~ e~ ~ (16) 
i = 1  

with 
p i t er" = ~ 2  ~ '  (G~} W IG,..~)(G,.,~IW~IG ') (17) 

where the sum excludes G ~, with h~G ~ = eiG i. This is the usual "sum over states" 
formula, and if we take G ~ = G~oo in conjunction with Eq. (15) we obtain the usual 
s-type Gaussian formula given in Eq. (12). Taking G ~ = G~oo,~ G ~ = Gb~o or G ~ = 
G~0~ corresponds to considering a p~-, py- or p~-type Gaussian respectively. We deal 
with two cases, double bonds and triple bonds, where a bond contains one or two 
p-type functions respectively. Of course, in both instances the bonds contain an 
additional s-type Gaussian, but this causes no problems and may be treated 
separately. 

3. The Magnetic Susceptibility of Bonds Containing p-Type Gaussians 

3.1. Double Bonds 

A simple example of a molecule containing a double bond is ethylene, C2H~, which 
we take to be in the x z  plane with the same geometry as before [3]. This means that 
the CC bond contains a py-type Gaussian, to represent the pi-bonding, which we 
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now consider separately as the remaining contributions to ~ from the s-type 
Gaussians can be calculated using the original formula. 

So we consider the case of a p~-type Gaussian in a magnetic field. Whatever direc- 
tion the field is in it is a simple matter to calculate the diamagnetic term which 
contains the same origin-dependent term as an s-type Gaussian. There is, however, 
an origin-dependent paramagnetic term for each direction which exactly cancels 
this, making the total contribution ff~ to ff from the pu-type Gaussian origin- 
independent. 

From Eqs. (14) and (17) the total contributions to ff~ are 

1 
x~.x = 2~ (~olo - ~ool) -~,  (18) 

1 
x,uu = -~-~' (19) 

w h e r e ,  is the exponent and with X ~  the same as Eq. (18) with elo0 replacing eoox. 
Then 

5 
~ = 12~  } ( (~olo  - ~o03  - 1  + (~0~o - ~ o o ) - 1 ) .  (20)  

I f  the em~v in Eq. (20) are given by Eq. (15) then eloo = eolo = Cool = 5~ and there 
is obviously a singularity problem in Eq. (20) due to the occupied and unoccupied 
p-orbital energy levels being degenerate. Normally one would avoid this difficulty 
by using degenerate perturbation theory and take a linear combination of degenerate 
states. In the case of acetylene, to be considered shortly, it will be seen that to a 
certain extent ordinary degenerate perturbation theory can be used. For  ethylene, 
however, 400 is completely determined by the Frost model wavefunction which only 
contains a single p~-type function. I f  the other p-type functions were present, then 
we could indeed take linear combinations. Since they are not, to avoid the 
degeneracy problem we redefine h~, as given by Eq. (14), in such a way as to 
remove the degeneracy. This corresponds directly to choosing values for the 
differences (~olo - e0ol) and (e01o - e~oo), in Eq. (20), and by suitable choices of 
these differences we may obtain any result desired. Intuitively it is to be expected 
that eo~o should lie below eloo and Eoo~ for C2H4 as it is the occupied level and so it 
can be seen that the paramagnetic contributions to ;G in Eq. (20), given in brackets, 
should be positive as usual. Obviously we wish to make reasoned choices, and so 
the problem really reduces to what sensible choices can be made for the energy 
levels of the p-orbitals. This will be discussed in Sect. 4. 

3.2. Triple Bonds 

A simple example is acetylene, C2H2, which we take to lie along the z-axis with the 
same geometry as before [3]. The CC bond contains a pu- and a px-type Gaussian 
representing the pi-bonding, which we will again consider separately from the s-type 
Gaussians. Through symmetry considerations the occupied energy levels elo0 and 
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eoxo are the same for acetylene, posing problems if we use the same approach as for 
ethylene. Instead, following degenerate perturbation theory, we take linear com- 
binations Px +- ip~ to represent pi-functions and ~oo of Eq. (1) will be given by 

r = Glo:GI[ 3" ' "  (G~,~ + iG~)a(Gp~ + iG~,,)fi(G~ - iGp~) 

x a(G~,~ - iG~,~)~... G,fl (2ia) 

in an obvious notation, rather than 

The total contribution to 2~ from Eqs. (14) and (17) using both p~ + ipu and 
p ~  - ip~, is 

5 
~ = 6~ -~(eoao - Coo0 -~ (22) 

and the problem again is where to choose the unoccupied energy level eoo~ relative 
to the degenerate occupied level eozo = ezoo. 

4. Various Choices of h, 

4.1. Ethylene 

As we have seen, the degeneracy problem can be avoided by choosing suitable and 
different values for eloo, eoao, ~ool (or their differences) and this is equivalent to 
choosing h~ of Eq. (14) suitably. We first consider three methods that require 
no extra computation, which we list before discussing. All are in conjunction with 
Eq. (20): 

A eolo - ~ool = eo~o - eloo = - 4 a  

B ~ o o l  - -  elOO ~ oO 

C % 1 o -  eloo = - 2 n %  % 1 o -  ~ool = - 2 m a ;  n , m  = 1,2 . . . .  

Method A gives exactly the same contribution as for an s-type Gaussian and as 
Blustin [4] points out, since in the ease of electric polarizabilities ~(p) - ~(s), in 
an obvious notation, it would seem reasonable to assume that the same would 
apply in the magnetic case and ~(p) -- ~(s). Certainly there is a lot to be said for 
this argument on physical grounds, and this would mean that the formula of 
Eq. (12) would apply to basis sets including p-type Gaussians. 

Method B involves removing the unoccupied levels to infinity, which reduces the 
contribution from the pi-system to the origin-independent diamagnetic contribu- 
tion. Again, there are certain similarities with the s-type Gaussian case, as this is the 
only non-zero term in both instances, though with different factors multiplying a-  1. 

The third method C corresponds to assigning values according to the eigenvalues 
of  the harmonic oscillator Hamiltonian, as given by Eq. (6), which differ by 
multiples of 2a. Then, from Eq. (20), we write 

5 
2~ 'm = - - -  + �89 -1 + (2m~)-~) (23) 

12a 
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we find ~).1 = - 1 / 1 2 ~ ,  ;~,1 = ~ .2  = - 1 / 6 ~  and 2~,2 = - 1 / 4 a .  These methods 
correspond to taking the values of  eloo and Cool to be either one or two energy 
levels above eolo with y~,2 yielding the same result as Method A. 

Alternative methods of  estimating the energy levels for the p-type Gaussians 
involve a recomputation of the wavefunction. Again we list the methods before 
discussing them. All are in conjunction with Eq. (20) once more: 

D eolo = highest occupied molecular orbital energy 
e10o, Cool = first and second virtual molecular orbital energies 

(Virtual molecular orbital method (VMO)) 

E eolo - Cool = (Eu - E~)/2; ,01o - ,1oo = (Eu - Ex)]2  

(Total energy method (TE)) 

F eloo, eolo, e0ol = highest molecular orbital energy when there is a p,:- ,  Pu" 

or p~-type Gaussian in q~0o 

(Molecular orbital method (MO)) 

In ordinary molecular orbital perturbation theory, using for example uncoupled or 
coupled Hartree-Fock theory, the energy differences analogous to the ones given 
above in Eq. (20) are related to the differences between occupied and virtual molec- 
ular orbital energies. We cannot directly use this method with the Frost model 
since there are no virtual orbitals when a Lewis basis set is used. However, by 
adding Px- and p~-type Gaussians to the CC bond we create virtual orbitals. All 
parameters are held fixed at their optimum value with the exponents of  the addi- 
tional p-type functions the same as for the py-type Gaussian. It is now no longer a 
Lewis set calculation, and we may equate eolo with the highest occupied molecular 
orbital energy and eaoo, Co01 with the virtual molecular orbital energies. This is 
Method D, denoted by VMO. 

The other two methods retain a Lewis basis set. Initially the wavefunction d ~ 0  
for ethylene contains a pu-type Gaussian 

(~o = G ~ a G J 3 .  . . G~ a G p j 3 .  . .  G j 3 ,  (24) 

which gives a total energy Ey and the highest molecular orbital energy % Then, if 
instead of ~ 0  we use 4~go or ff~0 with the same exponent as before, which involves 
substituting a Px" or p~-type Gaussian for the pu-type Gaussian in Eq. (24), we 
obtain values for E x ,  E~, *x and e~. In these calculations all parameters are again 
held fixed at their optimum values given using the wavefunction containing the 
p~-type Gaussian. For  Method E we consider differences in the total energy (TE) 
and for Method F we allocate the energy levels according to the respective molecular 
orbital energy levels. For  E the factor �89 appears because of the double occupancy 
of  each orbital. 
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4 . 2 .  A c e t y l e n e  

The six methods in Sect. 4.1 can also be applied to C2H2, some directly and some 
with slight adaptations. This time the methods are in conjunction with Eq. (22): 

A eolo - Cool = -2c* <:~ Using Eq. (12) 

B % o l  = oo 

C %1o = %o~ = eloo - -  cool  = --2n~ 

Again we can write 

5 1 
= - ~  + 3n'---~ (25) 

and ~ = -1/2c, whilst ~ = -2/3c~. Since ~ refers to the contribution from two 
orbitals, n = 1 retrieves Eq. (12) whilst n = 2 gives a contribution of -1/3c~ per 
p-type Gaussian. 

D %1o = ~oo = highest (degenerate) occupied molecular orbital energy 
%o~ = virtual molecular orbital energy (VMO) 

E ~o~o - % o l  = (E~, - E~,~)12 (TE) 
Substitute a pz-type Gaussian for the px-type Gaussian 

F ~oo~ = highest occupied molecular orbital energy 
eo~ = second highest occupied molecular orbital energy (MO). Wave- 
function as in E. 

5. Results and Discussion 

The calculations of the wavefunctions were performed using the OPIT program at 
Nottingham [5] with the fixed experimental geometries and orbital exponents as 
before [3]. The parameters required in Methods D, E, and F are given in Table 1, 
whilst Table 2 gives the results of  applying the various methods and they are com- 
pared with experiment and other theoretical calculations given in the excellent 
review article by Ditchfield [6]. The last entry uses the wavefunction given by Frost 
and Rouse [7] in terms of just s-type functions using Eq. (12). 

Method A, corresponding to using Eq. (12) for the mixed basis set, gives results very 
similar to those obtained using Frost's and Rouse's wavefunction and also the 
theoretical values of Pople. They are in reasonable agreement with experiment, 
underestimating for C~H2 and overestimating the magnitude for C2H4. It can be 
seen that there is not good agreement with experiment using Method B, corre- 
sponding to taking the origin-independent diamagnetic contribution, demonstrating 
that a positive origin-independent paramagnetic contribution is required. For  
Method C, the use of ~.1 for C2H4 and ~ for C2H2 give excellent results, whilst 
Methods D, E and F provide good results for one or other of the molecules but 
not both. In all instances results show a considerable improvement over SCF 
results and usually over CNDO and INDO. 
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Table 1. Parameters  ~ 

J. A. Yoffe 

Method  b 

CaH~ CsH2 

Parameter  Value Parameter  Value 

D (VMO) 

E (TE) 

F (MO) 

81oo + 0.6224 eolo - 0.1869 
eolo -- 0.1567 Zoo1 + 0.6272 
8ool +0.7978 
Ex -- 64.9572 Ex~ -- 64.7930 
E~ -- 65.9567 E~z -- 63.9659 
Ez -- 64.6559 

eloo +0.3284 8olo --0.1832 
8olo - 0.1624 8ool + 0.2748 
8oo:t + 0.4656 

All in a tomic  units,  b See Section 4, 

It is worth pointing out that it is not entirely clear as to the accuracy of the experi- 
mental results, as the theoretical results give ~(C2H4) < ~(C2H2), taking the minus 
sign into consideration, which is the reverse of the experimental results. The use of 
formulae such as that of Kirkwood [8] which use ~ to estimate ~ would certainly 
order it ~(C2H4) < ~(C2Ha). I f  we do accept the experimental results as being cor- 
rect, which of the methods A - F  is most suitable? Since the main attraction of 
the Frost model is its simplicity it is to be hoped that the formulae for properties 
would mirror this. For  this reason we would recommend either Method A, using 

Table 2. Average magnetic  susceptibilities a 

Method  b C2H4 C2H= 

Exper iment  - 1 8 . 8  + 0.8 - 2 0 . 8  + 0,8 
Pople - 20.8 - 17.8 
CNDO - 17.7 - 15.7 
I N D O  - 15.7 - 15.1 
SCF - 40.4 - 34.7 
A (Eq. (12)) - 2 1 . 2  - 1 7 . 9  
B (oo) - 2 5 . 1  - 2 4 . 2  
C (~.1) - 17.2 - 17.9 (XD 
C ( ~ a )  --19.2 --21.0 ( ~ )  
D (VMO) - 2 1 . 5  - 2 0 . 3  
E (TE) --19.5 --16.5 
F (MO) - 19.4 - 17.2 
Fros t  ~ (Eq. (12)) --20.7 - 17.5 

a 10-6 cgs units. 
b First  five results taken f rom Ref. [6]; see Section 4 for  

the other  methods.  (C2Ha in conjunction with Eq. 
(20), CsHz with Eq. (22).) 
Wavefunct ion of  Ref. [7]. 
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the original formula, or Method C, for, as well, no additional computation is 
required. Furthermore, Methods D - F  incorporate directly into the result the 
delocalized molecular orbitals, and it is to be hoped that changes in these will reflect 
similar changes in the localized orbitals. This is a drawback, as we are technically 
not using the correct orbitals for our theory, which requires localized ones. 

Method A gives very reasonable results though Method C, using 2~'~ and 2~ for 
C2H4 and C2H2 respectively, does show an improvement. Moreover, in the latter 
case the formulae are still in terms ofc~-~, the original orbital exponent, and we have 
simple expressions for ~ .  For aromatics, results seem to indicate that the original 
formula is adequate [9] due to the increased magnetic susceptibility of aromatics 
over aliphatics. From this, with ~.~ and 2~, we find for hydrocarbons 

f = - 4 ~.,a =, ~, 6 ,  =, cq 3 ~ =, ~ '  (26/ 

where the first sum is over all s- and aromatic p-type functions, the second over 
p-type functions in double bonds and the third over p-type Gaussians in triple 
bonds. All orbitals are assumed to be doubly occupied. 

Wavefunctions using elliptical Gaussians rather than spherical ones, as given by 
Eq. (2), are considerably rarer. Expressions for 2~ for both CzH ~ and C2H2 using 
elliptical Gaussians are given in the appendix, but results using the wavefunctions 
of van Duijnen and Cook [10] are poor, where once more it is the paramagnetic 
part that causes problems. 

6. Anisotropies 

Since the contributions for the three axes are no longer identical we may also 
calculate the anisotropy of X~, which is defined as AX, = X,, - X,.t and following 
Ditchfield [6] for C2H4 we take 

1 Ax= = x~..  - : (x=~ + x ~ ) .  (271 

Using ~.1 from Eq. (23), or ~,2 which will give the same result for ~,, we find 
AX~ = + 1/4~ or -- 1/8~, which is + 6.0 or - 3 . 0  in 10-6 cgs units respectively. The 
estimates for AX, that is for the whole molecule, defined by A X = X, - X• and in 
this case the formula of Eq. (28) omitting the subscript 7r, vary between + 8.7 and 
+ 11.8 [8] and so it would seem that ~,a is the one to use. Of course, there may well 
be additional anisotropic contributions from other parts of the molecule, but all 
other terms for s-type spherical Gaussians are isotropic and so only the anisotropy 
of  the pi-contribution can be given. 

For C2H2 we define AX~ by [6] 

I 
A x :  = x=,, - ~(x,~,~, + X,x~) (28) 

and for ~ of Eq. (25) we find AX~ = --5/12~, which is - 7 . 8  in 10 -6 cgs units, in 
excellent agreement with the experimental value of - 7 . 7  [11], but other theoretical 
estimates put the value between - 10.1 and - 19.4 [6]. 
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For  both C2H~ and C~H2, using the estimates of  AX~ above, assuming that A X = 
AX~ + AXe, then in view of results above AX, will be small. Of  course in our case 
AX, = 0, but it appears that AX~ provides a reasonable estimate of  A X when com- 
pared with the experimental value for C2H~ and theoretical values for C2H4. This 
is rather a simplistic view on a subject on which there has been much debate, see 
for instance Ditchfield [6] or Davies [12], for which different formulae for A X have 
been suggested, including X= and AX~ + AX= + X=, though these tend to be used 
rather more for ring systems. We feel, however, that the results for the anisotropies 
using Method C provide further evidence to support their use and that Eq. (26) 
should provide better estimates than the original formula. 

Acknowledgements. I would like to thank the SRC for the award of a postdoctoral fellowship 
and Dr. Terry Amos for discussions and a critical reading of this paper. 

Appendix. Formulae Using Elliptical Gaussians 

C2H4: 

H ~ 

with X~, the same as x=x~ with ~ replacing y, where %/~ and ~, are the exponents of  
the py-type Gaussian in the x-, y- and z-directions. The paramagnetic origin- 
independent contribution is given in brackets. 

C2H2 : 
1 1 f 3 ( ~ z - - . y )  z 1 ( ~ + ~ }  

4 r  + l + + X~.x = 2c, 

1 
(Z 

with X=~ = X~** as fl = ~. 
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